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Implicit Monte Carlo

Within a time step, the transport equation governing the Implicit

Monte Carlo (IMC) method for grey, slab-geometry, radiative

transfer problems is
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where the Fleck factor fn is given by
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Difficulties with IMC

The IMC method uses an effective-scatter process to approximate

absorption and emission of radiation within a time step.

• The physical opacity σn is divided into an isotropic scattering

opacity (1 − fn)σn and an absorption opacity fnσn.

• Effective scattering helps stabilize the calculation, allowing the

use of larger time steps.

However, as the opacity increases, standard Monte Carlo becomes

inefficient.

• The mean-free path between collisions is small.

• Collisions are primarily scattering events.

• The Monte Carlo transport process can be characterized as

diffusive.

• Particles histories are extremely long.
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Discrete Diffusion Monte Carlo

Discrete Diffusion Monte Carlo (DDMC) is a hybrid

transport-diffusion method for increasing the efficiency of Monte

Carlo simulations in diffusive media.

• DDMC is used in diffusive regions, while standard Monte Carlo

is employed in transport (i.e. optically thin) regions.

• DDMC particles take discrete steps between spatial cells

according to a discretized diffusion equation.

• Each DDMC step replaces several small transport steps, and

thus DDMC is more efficient than a pure standard Monte

Carlo simulation.

• Since DDMC is based on the diffusion approximation, this

hybrid technique should provide accurate results.
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Improvements to DDMC

We extend previously developed DDMC methods in several ways

that improve the accuracy and utility of DDMC for IMC

calculations.

• We use a diffusion equation that is discretized in space but is

continuous in time.

– theoretically more accurate than temporally discretized

implementations

– particle time is always known

– no ambiguity regarding what time to assign a DDMC

particle that leaves a diffusive region and is converted into a

Monte Carlo particle

4 of 19



Improvements to DDMC (continued)

• We employ an improved technique for interfacing DDMC and

Monte Carlo simulations.

– used for converting DDMC particles into Monte Carlo

particles, and vice versa

– based on the asymptotic diffusion-limit boundary condition

– produces accurate results regardless of the angular

distribution of Monte Carlo particles incident on the

diffusive region

• We develop a method for estimating momentum deposition in

DDMC.

– required in coupled radiation-hydrodynamics calculations to

correctly determine fluid motion
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Interior Cells

We consider a region XL < x < XR that has been designated for

simulation by DDMC, and subdivide it into a spatial grid of J

cells. We then derive a discretized diffusion approximation to the

IMC transport equation for interior cells 2 ≤ j ≤ J − 1,
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Interior Cells (continued)

The DDMC equation for interior cells can be viewed as a

time-dependent, infinite medium transport problem in each cell.

• Particles have no angular or spatial information, but their

current cell and time are always known.

• Particles stream in time (but not in space) at the speed of light.

• Particles experience not only absorption reactions, but also

“left-leakage” and “right-leakage” reactions.

• Particles that undergo leakage reactions are transfered to the

appropriate neighboring cell.

• The source term consists of not only the usual emission source,

but also particles experiencing leakage reactions in neighboring

cells.
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Asymptotic Diffusion-Limit Boundary Condition

The asymptotic diffusion-limit boundary condition at x = XL is
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where W (µ) is a transcendental function well approximated by

W (µ) ≈ µ +
3

2
µ2 , (8)

and Ib is the incident intensity.

This boundary condition has several advantageous properties.

• It can be derived in an asymptotic analysis of the IMC

transport equation as σn becomes large and fn vanishes. This

is exactly the situation where DDMC is employed.

• It produces an accurate interior solution regardless of the

angular distribution of the incident intensity.
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Interface Method

We now develop an interface method based on the asymptotic

diffusion-limit boundary condition. This is equivalent to deriving a

cell-centered equation for cell 1:
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Interface Method (continued)

The DDMC equation for cell 1 has a Monte Carlo interpretation

similar to the equation for interior cells.

• The expression for the left-leakage opacity is different.

• The rate at which radiation energy is incident on the DDMC

region for a given direction µ is µIb(µ). Thus, the probability

that an incident Monte Carlo particle will be converted into a

DDMC particle is P (µ).

• Converted Monte Carlo particles begin transporting via DDMC

in cell 1.

• Unconverted Monte Carlo particles and leaked DDMC particles

are placed isotropically on the DDMC region boundary.
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Momentum Deposition

The specific momentum deposition (i.e. the momentum deposited

per unit volume per unit time) is given by

p(x, t) =
σ

c
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Using the flux at each cell edge,
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we can estimate the specific momentum deposition in each cell

using the rate at which DDMC particles travel between cells,
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Numerical Results

We now examine two problems with both optically thick and

optically thin regions. We employ standard Monte Carlo in the

optically thin region, and either standard Monte Carlo or DDMC

in the optically thick region.

First Problem:

• This problem is driven by an isotropic surface source on the

left boundary.

• The left-most region is 0.1 cm of optically thick material,

followed by a 0.4 cm optically thin region.

• The DDMC simulation was approximately 20 times faster than

standard Monte Carlo.
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Figure 1: First Problem Material Temperature
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Figure 2: First Problem Momentum Deposition at 10 ns
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Numerical Results (continued)

Second Problem:

• This problem is driven by a normal surface source on the left

boundary.

• The left-most region is 1.0 cm of optically thin material,

followed by a 0.5 cm optically thick region.

• The radiation reaching the optically thick region is fairly

anisotropic. Thus, using our improved interface method is

important.

• The DDMC simulation was approximately 13 times faster than

standard Monte Carlo.
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Figure 3: Second Problem Material Temperature
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Figure 4: Second Problem Momentum Deposition at 0.5 ns

17 of 19



Conclusions

We have extended previously developed DDMC methods in several

ways that improve the accuracy and utility of DDMC for grey IMC

calculations.

• We base our method on a temporally continuous diffusion

equation.

• We use an interface technique that is derived from the

asymptotic diffusion-limit boundary condition.

• We have developed a method for estimating momentum

deposition during the DDMC simulation.

18 of 19



Conclusions (continued)

However, several issues remain for future work.

• The statistical error in momentum deposition estimates must

be reduced, both for DDMC and standard Monte Carlo.

• We must be able to determine when and where to employ

DDMC a priori.

• Our improved DDMC method must be extended to

frequency-dependent, multi-dimensional simulations.
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